Efficient Interference Graph Estimation via Concurrent Flooding

Haifeng Jia*, Yichen Wei*, Zhan Wang, Jiani Jin, Haorui Li, and Yibo Pi

Network Measurement and Systems Lab

University of Michigan - Shanghai Jiao Tong University Joint Institute

Motivation: Why Interference Graph is Important in Wireless Sensor Network?

 \checkmark

Spatial Concurrency Scenario in a Wireless Sensor Network

Interference Graph (IG)

If A and C send at the same time, what tx powers should they use?

Challenges for Interference Graph Estimation (IGE) in Wireless Sensor Networks

High measurement cost of traditional IGE

- Occupy extra time/frequency resources
- Delay data transmission

The current state of art of Interference Graph

Network scale: N, Link scale: $O(N^2)$

 \Rightarrow Traditional measurement cost: O(N) slots

O(N) slots are too long for wireless sensor networks!

Marry IGE with flooding without extra time/frequency resources

How could we achieve this?

Key idea: Use power as a new dimension for measurement.

Motivations, Challenges & Introduction

Interference Graph Estimation (IGE)

- I. Power Linearity
- II. Full-rank Constraint

Practical IGE Scheme

Real-world Experiment

Power Linearity Break Down

Linearity = Proportionality + Additivity

$$p_{i \to j}^{rx} = h_{ij} p_i^{tx}$$
 (proportionality)
 $p_i^{rx} = \sum_j p_{j \to i}^{rx}$ (additivity)

Proportionality between Tx and Rx Powers

Experimental Setup

Proportionality between Tx and Rx Powers

Experimental Result

Linear region: 1) Rx power $\in [-20, -90]$ dBm 2) Tx power ≤ 0 dBm

Experimental Setup

Additivity of Received Powers

88% of power ratios fall within 0.9 and 1.1

Power ratios decrease as rx powers increase

Similar additivity except for rx power greater than -24 dBm

$$\begin{bmatrix} \mathbf{P}^{tx} \cdot h_i = p_i^{rx} \\ rank(\mathbf{P}^{tx}) = \#\text{Senders} \end{bmatrix}$$
Full-rank constraint

$$\Rightarrow h_i = (\mathbf{P}^{tx})^{-1} \cdot p_i^{rx}$$

Feasibility of IGE under controlled environment

Experimental Setup

Experimental Result

Motivations, Challenges & Introduction

Interference Graph Estimation (IGE)

- I. Power Linearity
- II. Full-rank Constraint

Practical IGE Scheme

Real-world Experiment

IGE period + Update period
Power control: allocate tx powers

Motivations, Challenges & Introduction

Interference Graph Estimation (IGE)

- I. Power Linearity
- II. Full-rank Constraint

Practical IGE Scheme

Real-world Experiment

Testbed Setup

Accuracy of IGE on our testbed

 $ratio = 10 \cdot lg \left(\frac{h_{error \geq 3dB}}{r}\right)$

 $\frac{60\%}{\text{errors}} \leq 3 \frac{dB}{B}$

70 % of the ratio $\leq -10 \ dB$ (at least 10 times smaller than the max channel gain)

IGE in real world underperforms controlled experiments, but is still feasible, where large errors usually occur with small channels.

- We integrate interference graph estimation (IGE) into data transmission using the same frequency-time resources.
- We demonstrate the feasibility of IGE over COTS Nordic nRF52 series SoCs in both controlled and real-world experiments.
- Concurrent flooding is a perfect carrier for IGE in wireless sensor networks.

Thank You! Q&A

Haifeng Jia

Network Measurement and Systems Lab UM-SJTU Joint Institute Shanghai Jiao Tong University *https://haifengjia.github.io/*

